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The efficacy of various transmitter systems declines with

advancing age. Of particular interest, various pre-synaptic and

post-synaptic components of the dopaminergic system

change across the human lifespan; impairments in these

components play important roles in cognitive deficits

commonly observed in the elderly. Here, we review evidence

from recent multimodal neuroimaging, pharmacological and

genetic studies that have provided new insights for the

associations among dopamine functions, aging, functional

brain activations and behavioral performance across key

cognitive functions, ranging from working memory and

episodic memory to goal-directed learning and decision

making. Specifically, we discuss these empirical findings in the

context of an established neurocomputational theory of aging

neuronal gain control. We also highlight gaps in the current

understanding of dopamine neuromodulation and aging brain

functions and suggest avenues for future research.
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Global aging
According to the United Nation’s 2011 report on world

population prospects, the number of people aged 65 or

older will outnumber children under age 5 before 2020

[1]. This unprecedented demographic shift is jointly

driven by reduced fertility rates and an increase in life

expectancy. In most developed countries the average life

expectancy at birth has increased from about 45 years in

1840 to above 75 years in 2000 [2,3]. This remarkable
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30-year gain in physical health is, however, not necess-

arily accompanied by cognitive fitness and mental well-

being into old age. Faced with the rapid growth of aging

populations worldwide and an ever-expanding prevalence

of dementia, understanding brain aging and aging-related

cognitive declines has become a key challenge for neuro-

science and psychology in the 21st century.

Brain aging is characterized by multiple neurobiological

changes including losses of white matter integrity, cortical

thickness and grey matter volumes, metabolic activity,

and neurotransmitter functions (e.g. see [4�] for an over-

view). The focus of the current review will be on aging-

related declines in neurotransmitter functions and the

associated implications for cognitive functioning. The

emphasis will be on recent studies that have linked

declines in various markers of the dopamine system to

information processing fidelity, memory functions as well

as reward-based learning and decision-making in old age.

Aging-related declines of neurotransmitter
systems
Neurons contain and release a large number of neuro-

transmitters, which regulate signal transmissions between

neurons [5]. Several transmitter systems, such as the

catecholamines — dopamine, serotonin, and norepi-

nephrine — and acetylcholine, originate from the brain

stem (e.g. subtantia nigra, ventral tegmental area, raphe

nucleus) and broadly innervate various neural circuitries

throughout the brain. In contrast to faster transient effects

on local synaptic neurotransmission, these transmitter

systems also exert lasting long-range neuromodulatory

effects in various brain regions throughout striatum and

the cortex that play central roles in key aspects of cogni-

tion and behavior.

Primate and human positron emission tomography (PET)

studies in the 1980s [6–9] first suggested aging-related

losses of neurotransmitter functions. By now, there is

general consensus that brain aging takes tolls on these

transmitter systems, and a large number of studies have

started to explore the functional implications of neuro-

transmitter losses, in particular those of the neurotrans-

mitter dopamine.

In vivo PET receptor imaging studies in healthy elderly

populations show extensive evidence for gradual but

pervasive declines in different markers of the dopamine

system: the binding potential of pre-synaptic dopamine

transporter [10] and D2 [11] receptor in the striatum show
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clear aging-related declines (Figure 1a, b). The binding

potential of a PET ligand is an index of the density of

receptors or transporters in the given region of interest.

Similar to striatal receptor densities, D1 [12] and D2 [13�]
receptor densities in the frontal regions are negatively

affected by aging. Collectively, the evidence based on

cross-sectional imaging studies in humans indicates

density losses in extrastriatal and striatal presynaptic

and postsynaptic markers of the dopamine system of
Figure 1
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up to 10% per decade, starting around the beginning of

the third decade of life [13�,14,15,16�].

Although a large portion of the literature on neurotrans-

mitter functions in old age has focused on dopamine, it

should be noted that cross-sectional estimates of seroto-

nin receptor availability (e.g. 5-HT2a in Figure 1c;

[8,17–19]) as well as markers of the acetylcholine system,

including muscarinic receptors (Figure 1d, [20]) and the
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nicotinic acetylcholine receptor (b2-nAChR), also show

significant declines with advancing age in various brain

regions, including the striatum, parietal, frontal, and

temporal regions [21] (see also [22,23]).

Aging neuronal gain control
Over the past two decades, computational neuroscience

has contributed to understanding the mechanisms

through which dopamine [24–27], serotonin [28], norepi-

nephrine [29] and acetylcholine [30] regulate the

dynamics of neural information propagation within and

between brain circuitries. The roles of neuromodulators

have been modeled at different levels of analysis as well

as with respect to different functionalities (e.g. attention,

memory as well as reward and affective processing).

Diversities in the specifics of modeling aside, a key role

of neuromodulation that is subscribed by most compu-

tational approaches is neuronal gain control, be it in the

forms of tuning the signal-noise-ratio (SNR) of synaptic

signal transmission or gating information transfers

between cortical networks [24–32].
Figure 2
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Extending an early computational model of cognitive

symptoms in schizophrenia that implicated suboptimal

dopamine modulation of the SNR of neural information

processing in the prefrontal cortex [25], over a decade ago

the stochastic gain tuning model of aging [31] explicated a

sequence of computational effects that link deficient

dopamine modulation in the aging brain with impair-

ments in cognitive processes and behavior. Specifically,

this model captures aging-related decline in dopaminer-

gic neuromodulation by stochastically attenuating the

gain (G) parameter of the sigmoidal activation function,

which models presynaptic to postsynaptic input-response

transfer (Figure 2a). Reducing gain control reduces the

slope of the activation function and the SNR of infor-

mation transmission, which yields a sequence of

subsequent effects that are suboptimal for neurocompu-

tation in the simulated ‘old’ network (Figure 2b):

increased random processing activations (noise), reduced

representation distinctiveness of activation patterns, non-

selective recruitment of presumably independent proces-

sing modules [32]. In terms of functional consequences,
(e.g., Reduced rate of evidence accumulation & memory span)
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these suboptimal neurocomputational properties have

negative implications for information processing

(Figure 2c), for instance in terms of reduced rate of

evidence accumulation (i.e. slower drift rate as modeled

in diffusion/sequential sampling models [33]) and mem-

ory capacity [32]. The stochastic gain tuning model also

yields an inverted-U function that relates DA signaling

and cognition ([32], Figure 2c), which is in good agree-

ment with empirical findings from animal [34] and clinical

[35] research (see also [36,37] for reviews).

Over the last decade, genetic, psychophysiological, and

brain imaging studies have shown that dopamine func-

tions in the aging brain contribute to the elderly’s impair-

ments in various aspects of cognitions and behavior. The

following sections will review recent studies that have

implicated suboptimal dopamine modulation in the aging

of information processing fidelity, memory functions and

goal-directed learning and decision making.
Figure 3
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Aging of information processing fidelity
At the behavioral level, information processing fidelity

can be indexed by the inverse of within-person trial-to-

trial reaction time (RT) variability. Higher levels of

within-person behavioral variability when performing

sensorimotor, perceptual, and cognitive tasks reflect a

lack of processing fidelity and is indicative of suboptimal

processing associated with pathology or aging [38]. Across

the lifespan, information processing fidelity increases

substantially during childhood in a various cognitive

functions, reaches a maximum in early adulthood and

then declines considerably with advancing age [39]

(Figure 3a). When cognitive processes are modeled as

a diffusion process, decreased information processing

fidelity in older adults is reflected in increased trial-to-

trial variability in the rate of evidence accumulation (drift

rate) and reduced drift rates for performance in source

memory [40], semantic and perceptual discrimination

tasks [41]. Of particular clinical relevance, older adults
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erse of within-person trial-by-trial variability; data adapted from [39] with

rnals). (b) Adult age differences in EEG inter-trial phase coherence. Lower

nals in the theta range in older adults. (c) Theta inter-trial coherence
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who exhibited more short-term moment-to-moment RT

fluctuations showed steeper longitudinal declines over 13

years in the category fluency task that, in part, demands

executive control [42]. Moreover, psychophysiological

measures of neuronal variability during executive control

that are derived from electroencephalogram (EEG), such

as greater amplitude variability of the P300 evoked brain

potential [43] or lower theta inter-trial phase coherence

[44], showed increased variability in older adults and AD

patients as compared to healthy controls. A lower level of

EEG phase coherence across trials partly reflects

temporal ‘jitters’ in neuronal activity, which is in turn

associated with higher trial-to-trial RT fluctuation at the

performance level (Figure 3c).

Of interest to the current review is the effect of deficient

dopamine modulation on random performance and

neuronal variability. An early animal study had shown

that dopamine receptor reductions as observed during

aging not only slow down the animal’s performance but

also increase performance variability [45]. Prefrontal

broadband noise derived from EEG is also increased in

patients with schizophrenia, a pathological condition

marked by dysfunctional dopaminergic neuromodulation

[46]. Furthermore, recent neuroimaging studies indicate

that individual and aging-related differences in dopamine

receptor density are associated with cognitive processing

fidelity. Lower dopamine receptor binding potentials

(measured by PET) in the cortex have been found to

be associated with lower processing fidelity (higher

within-person trial-by-trial RT fluctuations) in middle

aged adults during episodic memory and executive con-

trol task [47,48��,49]. These studies are in line with the

theoretical link between dopaminergic modulation of

SNR of synaptic signal transmission, neuronal noise,

and fluctuations in performance.

Aging of memory functions
In his autobiography (1924, Haper & Brothers Publish-

ers), Mark Twain wrote about his memory problems at old

age: ‘‘When I was younger, I could remember anything,

whether it had happened or not; but my faculties are

decaying now and soon I shall be so that I cannot

remember any but the things that never happened.’’

Twain’s personal lamentation voiced a core issue of

human conditions that most people experience with

advancing age: the problem of less reliable memory.

Aging-related declines in the anatomical, neurochemical,

and functional integrities of the frontal-hippocampal-

striatal circuitry contribute to age-related impairments

in memory functions, including working memory, episo-

dic memory and source memory [49]. Here, we will

selectively highlight recent evidence from behavioral

genetic and brain imaging studies that have suggested

associations between deficient dopamine modulation and

memory functions supported by the frontal-hippocampal-

striatal circuitry.
Current Opinion in Neurobiology 2014, 29:148–158 
PET studies in healthy young adults suggest that better

working memory performance is associated with higher

capacity of dopamine synthesis in caudate [50] and

greater extrastriatal dopamine release [51]. Extending

this line of research, evidence from multimodal imaging

studies combining MRI and PET show that in older

adults PET markers of the DA system are associated

with fMRI activity in prefrontal and parietal cortex during

working memory [52,53] as well as the functional con-

nectivity between striatum and prefrontal cortex [54], an

index of optimal neuronal coupling that is reduced in

older adults. Relatedly, another study [55] showed that

the functional connectivity between the prefrontal and

parietal cortex, key regions in the fronto-parietal control

network that underlies working memory, was reduced in

older compared to younger adults (Figure 4a). Impor-

tantly, in this study interindividual differences in the

frontal-parietal connectivity correlated positively with

striatal caudate D1 receptor density (Figure 4b),

suggesting that age-related losses in striatal DA receptors

partly explain age-related decline in fronto-parietal net-

work strength and working memory.

A promising line of research that is gaining in popularity

are genetic behavioral and imaging studies that make use

of genetic predispositions that are associated with indi-

vidual differences in dopamine functioning. In line with

the multi-modal imaging studies reviewed above, a recent

imaging genetics study showed that older adults who are

of a specific genotype, associated with higher frontal

dopamine signaling, that is, Met carriers of the cate-

chol-O-methyltransferase (COMT) gene, showed patterns

of brain activation during working memory that

resembled the patterns of young adults. Carriers of the

genotype associated with reduced frontal dopamine

(COMT Val carriers) exhibited the patterns of inefficient

prefrontal activation associated with aging [56��].

In addition to a limited working memory capacity, advan-

cing age is also characterized by reduced working memory

plasticity following cognitive training [57]. Receptor ima-

ging studies with younger adults showed that extensive

working memory training alters the binding potentials of

cortical dopamine D1 receptor [58�] (measured with

[11C]SCH23390), striatal dopamine release [59�] (inferred

by [11C] raclopride displacement) and striatal activation

[60�]. Considering that training-related transfer following

cognitive intervention appears to be mediated by striatal

dopamine functions [60�], it is plausible that aging-

related decline in striatal dopamine signaling is one factor

that limits training-related memory improvements in the

elderly.

Episodic memory — memory for experienced events —

is multifaceted. For instance, the memory about an old

conversation includes the content of the conversation, the

persons involved as well as the time and place at which
www.sciencedirect.com
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Figure 4
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(a) Frontal–parietal functional connectivity during working memory is reduced in older adults. (b) Caudate D1 receptor density correlates with the

frontal-parietal connectivity particularly in older adults (data adapted from [55] with permission, copyright 2011, Society of Neuroscience). (c)

Dopamine transporter genotype (DAT1) and D2 receptor genotype (DRD2) interactively affect backward serial memory, particularly in older adults (data

adapted from [70] with permission, copyright 2013 Elsevier).
the conversation took place. Associative mechanisms are

required to bind different aspects of an experience into an

integrated episode in long-term memory. The frontal-

hippocampal circuitry has been implicated in the strategic

organization and elaboration of memory materials during

encoding, the binding of different features and consolida-

tion of memory episodes, as well as pattern completion
www.sciencedirect.com 
and monitoring processes during retrieval [61]. Compared

to memory for specific facts or knowledge (item and

semantic memory), the elderly are particularly impaired

in episodic strategic organization and elaboration [62,64]

that are subserved by the frontal network [40,59�,60�] as

well as associative mechanisms that implicate the hippo-

campus [65–67].
Current Opinion in Neurobiology 2014, 29:148–158
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Evidence from animal research indicates that midbrain

dopamine modulation of the hippocampus plays an import-

ant role in stabilizing and maintaining encoded memory

associations in long-term memory [68]. In humans, a recent

pharmacological imaging study showed that a pharmaco-

logical dopamine agonist (levodopa) enhanced episodic

memory and brain activation in older adults [69��]. Recent

behavioral genetic evidence shows that genetic predisposi-

tions of dopamine transporter (DAT1) and receptor (DRD2)

genes are associated with individual differences in serial

memory (Figure 4b, [70�]) and long-term episodic memory

forgetting [71], particularly in older adults. The magnifi-

cation of genotype effects in old age can be computation-

ally derived from the non-linear neuronal gain control

function [31], which results in an inverted-U function

relating levels of dopamine signaling and memory per-

formance [32] that is in line with empirical evidence [34–
37]. Effects of genetic predispositions can thus be expected

to be larger in individuals whose efficacy of dopamine

modulation is further away from the optimal level [72],

that is, the top portion of the inverted-U function [32].

Finally, non-selective functional recruitments of

additional brain regions during both episodic and working

memory are common observations in fMRI experiment in

older adults [see [73] for an early review]. For instance,

during episodic encoding older adults tend to under-

recruit left frontal cortex, while at the same time non-

selectively recruiting right frontal regions that are usually

not recruited in younger adults for the same process

[63,74]. Non-selective recruitment in older adults has

also been demonstrated during retrieval. Whereas brain

activation in left prefrontal cortex and the hippocampus

are selectively modulated by the demand of associative

binding during retrieval in younger adults, the activities

of the frontal-hippocampal network seem not sensitive to

the associative demands in older adults [75]. The sto-

chastic gain tuning model predicts general non-efficient

over activation and non-selective recruitment of presum-

ably independent processing pathways (Figure 2b, [32]),

suggesting that non-selective fMRI activation of brain

regions in aging across a variety of tasks might, in part, be

a reflection of reduced dopamine functions in older age.

This notion has to date not been comprehensively inves-

tigated but was supported by genomic imaging studies

[35,56] showing that Val homozygotes of the COMT gene

exhibited non-efficient over activation in prefrontal areas

during working memory. Amphetamine, which tempor-

arily increases synaptic dopamine level, reduced the over-

activation and improved performance [35].

Aging of goal-directed learning and decision-
making
Midbrain dopamine neurons are critically involved in mod-

ulating reward processing [76]. Reward anticipation has

been shown to enhance long-term memory formation

through stronger coupling between the striatal and
Current Opinion in Neurobiology 2014, 29:148–158 
hippocampal activities during encoding [77]. Thus, inter-

actionsbetweenstriataldopaminereleaseandhippocampal

memory processes may, on the one hand, bias memory for

events with higher reward or motivational significance and,

on the other hand, provide a mean for forming integrated

memory representations that guide future actions [78,79].

Given aging-related declines in various aspects of frontal

and striatal dopamine modulation (see Figure 1), accumu-

lating evidence indicates adult age differences in reward-

based learning and decision-making. Findings from stu-

dies using probabilistic reinforcement learning or incen-

tive delay tasks that compare striatal activations in

younger and older adults indicate that striatal signaling

of reward or outcome valence per se may not be affected

by aging [80,81]. However, complex integration of reward

values with outcome expectations for reward prediction,

which depends on prefrontal outcome monitoring and

hippocampal memory processes that integrate expec-

tation-action-outcome contingencies, is impaired in aging

[81,82,83�,84–87]. Several studies have indicated a link

between fMRI activation in key areas of the dopamine

system and performance of older adults during tasks

involving reward-related processes. For instance, the

greater temporal variability in mesolimbic activity

assessed during a financial decision task seems to mediate

older adults’ suboptimal choices [83�]. Furthermore, in

comparison to younger adults, healthy older adults and

unmedicated Parkinson’s patients under-recruited meso-

limbic activity for learning the predictive value of

rewards, while showing preserved responses to the reward

outcome itself [84]. In inter-temporal choice tasks, where

individuals are presented with the choice options of

immediate or delayed rewards of different magnitudes,

older adults tend to discount delayed reward less than

younger adults. This behavioral effect is paralleled by a

reduced sensitivity of striatal activities to immediate or

delayed rewards [85–87]. That said, further research is

necessary to better understand age-related differences in

decisions about future rewards, as current findings are still

mixed, depending on delay durations and task types.

Although a considerable number of studies exists linking

striatal fMRI signal and reward expectation in younger

samples, PET studies, genetic imaging and behavioral

studies that could link individual differences in dopamine

modulation to reward processing and decision making in

older adults are still rare. A notable exception is a recent

pharmacological imaging study, which shows that L-

DOPA can restore the striatal activity and improve

decision performance in some older adults [88��].

Outlook: enhancing neuronal gain control via
cognitive training and non-invasive brain
stimulation
If reduced neuronal gain control is at the heart of dopa-

mine-related cognitive decline in aging, how could
www.sciencedirect.com
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neuronal gain control be enhanced in older adults? In the

future, pharmacological intervention might be a viable

approach for restoring neuromodulatory functions in reg-

ulating the processing fidelity of synaptic signal trans-

mission or gating information transfers between cortical

networks. To date, however, cognitive enhancer drugs

that are suitable for the non-clinical elderly populations

are not readily available, and bear a great risk for side

effects that likely outweighs the benefits. Cognitive

interventions and non-invasive brain stimulations that

may be able to target the dopamine system constitute

interesting alternatives to pharmaceuticals.

In younger adults, working memory training across five

weeks was found to be associated with changes in cortical

dopamine D1 receptor binding potential in the prefrontal

and parietal cortices [58�] and in striatal dopamine D2

receptor binding potential [59�]. Although there is little

evidence to date that similar intervention successes

could be achieved in older adults, understanding the

neural circuitry that underlies reduced gain control in

older adults may open up future avenues for the de-

velopment of cognitive interventions that target specific

functional brain circuitries (e.g. the frontal-hippocampal-

striatal network) innervated by the major transmitter

pathways.

Related to the development of non-invasive cognitive

interventions that are designed to target specific brain

pathways in order to enhance older adults’ performance,

one other approach is non-invasive brain stimulations.

Studies using transcranial magnetic stimulation (TMS) or

transcranial direct current stimulation (tDCS) that were

applied to the fronto-parietal network revealed cognitive

enhancing effects in young adults, clinical samples [see

[89] for review]. Very recently, a few explorative studies

have begun to use non-invasive brain stimulations in

older adults. Some preliminary success in terms of ame-

liorating cognitive aging deficits could be demonstrated.

For instance, anodal tDCS applied over the left inferior

frontal gyrus improved performance in a semantic word

generation task that implicates frontal cognitive control

and working memory in old adults. Moreover, anodal

tDCS also reduced the non-specific recruitment of the

right prefrontal regions in older adults observed with

fMRI, and modified functional brain activity of older

adults to resemble those observed in younger adults

[90�]. Of note, TMS applied to the prefrontal cortex

has been shown to elicit dopamine release in striatum

[91], to perturb functional connectivity of the striatum

[92], activate the midbrain [93], and to interact with

baseline dopamine level [94]. Thus, non-invasive brain

stimulations might, in part, exert their effects through

dopaminergic modulation. Together, these findings

demonstrate reciprocal interplays between environmen-

tal supports in the form of cognitive training or non-

invasive brain stimulation and dopamine modulation in
www.sciencedirect.com 
vivo and hint at possible new avenues for buffering the

aging population’s cognitive vitality by sharpening

neuronal gain control. In light of the recent evidence

suggesting that an attenuated transfer effect of working

memory training in older adults maybe associated with

the under-recruitment of striatal activation [60�], com-

bining frontal tDCS or TMS simulations with cognitive

training might be a viable mean to enhance the inter-

vention benefits in old adults. The initial progress not-

withstanding, further research is needed for better

understandings about the underlying mechanisms of

tDCS and TMS, their long-term effects and potential

risks, in order to develop appropriate protocols for ger-

ontological applications.

Conclusions
Computational models have suggested that suboptimal

dopamine modulation attenuates neuronal gain control,

which yields a sequence of suboptimal neurocompua-

tional effects that (Figure 2) may underlie deficits in

older adults’ cognition and behavior across multiple

domains. Over the last decade, neuroimaging, genetic

and pharmacological manipulation studies have accumu-

lated and provided compelling evidence for a link be-

tween deficient dopamine modulation in the aging brain

and the elderly’s limitations in (i) information processing

fidelity, (ii) working memory and episodic memory, and

(ii) goal-directed learning and decision making. Where

available, we have focused on imaging studies that linked

dopamine functions (in terms of PET, genetics, or

pharmacological manipulation) to both behavioral per-

formance and patterns of fMRI activations that are com-

mon in aging. We have also highlighted existing gaps in

the literature. For example, the association between

deficient dopamine modulation and non-selective over-

activation in aging is still insufficiently explored. More-

over, although animal and human studies suggest a strong

involvement of dopamine functions in reward-related

processes, relative to evidence on dopamine’s role in

memory deficits, knowledge about how deficient dopa-

mine modulation in aging may limit goal-directed learn-

ing and decision making in old age is still scarce. Finally,

we have briefly reviewed recent findings from cognitive

training and non-invasive transcranial stimulations, which

suggest cognitive-enhancing interventions, be it training

or brain stimulation, that target the frontal-striatal circui-

try and neuromodulation may be a promising avenue for

future aging research.
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Bäckman L, Nyberg L, Soveri A, Johansson J, Andersson M,
Dahlin E, Neely AS et al.: Effects of working-memory training on
striatal dopamine release. Science 2011, 333:718.

A recent study showing that striatal D2 receptor binding (measured by
raclopride) is also sensitive to working memory training in young adults.

60.
�

Dahlin E, Neely AS, Larsson A, Bäckman L, Nyberg L: Transfer of
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71. Papenberg G, Bäckman L, Nagel IE, Nietfeld W, Schröder J,
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Heinze HJ, Düzel E: Ageing and early-stage Parkinson’s
disease affect separable neural mechanisms of mesolimbic
reward processing. Brain 2007, 130:2412.

85. Samanez-Larkin GR, Mata R, Radu PT, Ballard IC, Carstensen LL,
McClure SM: Age differences in striatal delay sensitivity during
intertemporal choice in healthy adults. Front Neurosci 2011,
5:126.

86. Eppinger B, Nystrom LE, Cohen JD: Reduced sensitivity to
immediate reward during decision making. PLoS ONE 2012,
7:e36953.

87. Eppinger B, Schuck NW, Nystrom LE, Cohen JD: Reduced
striatal responses to reward prediction errors in older
compared to younger adults. J Neurosci 2013, 33:9905-9912.

88.
��

Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q,
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